Math 221: LINEAR ALGEBRA

Chapter 6. Vector Spaces
 §6-3. Linear Independence and Dimension

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $04 / 05 / 2021$)

Linear Independence

The Fundamental Theorem

Bases and Dimension

Linear Independence

The Fundamental Theorem

Bases and Dimension

Linear Independence

Linear Independence

Definition

Let V be a vector space and $\mathrm{S}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{k}}\right\}$ a subset of V . The set S is linearly independent or simply independent if the following condition holds:

$$
\mathrm{s}_{1} \mathbf{u}_{1}+\mathrm{s}_{2} \mathbf{u}_{2}+\cdots+\mathrm{s}_{\mathrm{k}} \mathbf{u}_{\mathrm{k}}=\mathbf{0} \quad \Rightarrow \quad \mathrm{s}_{1}=\mathrm{s}_{2}=\cdots=\mathrm{s}_{\mathrm{k}}=0
$$

Linear Independence

Definition

Let V be a vector space and $\mathrm{S}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{k}}\right\}$ a subset of V . The set S is linearly independent or simply independent if the following condition holds:

$$
\mathrm{s}_{1} \mathbf{u}_{1}+\mathrm{s}_{2} \mathbf{u}_{2}+\cdots+\mathrm{s}_{\mathrm{k}} \mathbf{u}_{\mathrm{k}}=\mathbf{0} \quad \Rightarrow \quad \mathrm{s}_{1}=\mathrm{s}_{2}=\cdots=\mathrm{s}_{\mathrm{k}}=0
$$

i.e., the only linear combination that vanishes is the trivial one.

Linear Independence

Definition

Let V be a vector space and $\mathrm{S}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{k}}\right\}$ a subset of V . The set S is linearly independent or simply independent if the following condition holds:

$$
\mathrm{s}_{1} \mathbf{u}_{1}+\mathrm{s}_{2} \mathbf{u}_{2}+\cdots+\mathrm{s}_{\mathrm{k}} \mathbf{u}_{\mathrm{k}}=\mathbf{0} \quad \Rightarrow \quad \mathrm{s}_{1}=\mathrm{s}_{2}=\cdots=\mathrm{s}_{\mathrm{k}}=0
$$

i.e., the only linear combination that vanishes is the trivial one. If S is not linearly independent, then S is said to be dependent.

Example

The set $\mathrm{S}=\left\{\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\right\}$ is a dependent subset of \mathbb{R}^{3} because

$$
\mathrm{a}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\mathrm{b}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\mathrm{c}\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

has nontrivial solutions, for example $\mathrm{a}=2, \mathrm{~b}=3$ and $\mathrm{c}=-1$.

Problem

Is the set $T=\left\{3 x^{2}-x+2, x^{2}+x-1, x^{2}-3 x+4\right\}$ an independent subset of \mathcal{P}_{2} ?

Problem

Is the set $T=\left\{3 x^{2}-x+2, x^{2}+x-1, x^{2}-3 x+4\right\}$ an independent subset of \mathcal{P}_{2} ?

Solution
Suppose $a\left(3 x^{2}-x+2\right)+b\left(x^{2}+x-1\right)+c\left(x^{2}-3 x+4\right)=0$, for some $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{R}$. Then

$$
\mathrm{x}^{2}(3 \mathrm{a}+\mathrm{b}+\mathrm{c})+\mathrm{x}(-\mathrm{a}+\mathrm{b}-3 \mathrm{c})+(2 \mathrm{a}-\mathrm{b}+4 \mathrm{c})=0
$$

implying that

$$
\begin{aligned}
3 \mathrm{a}+\mathrm{b}+\mathrm{c} & =0 \\
-\mathrm{a}+\mathrm{b}-3 \mathrm{c} & =0 \\
2 \mathrm{a}-\mathrm{b}+4 \mathrm{c} & =0
\end{aligned}
$$

Problem

Is the set $T=\left\{3 x^{2}-x+2, x^{2}+x-1, x^{2}-3 x+4\right\}$ an independent subset of \mathcal{P}_{2} ?

Solution
Suppose $a\left(3 x^{2}-x+2\right)+b\left(x^{2}+x-1\right)+c\left(x^{2}-3 x+4\right)=0$, for some $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{R}$. Then

$$
\mathrm{x}^{2}(3 \mathrm{a}+\mathrm{b}+\mathrm{c})+\mathrm{x}(-\mathrm{a}+\mathrm{b}-3 \mathrm{c})+(2 \mathrm{a}-\mathrm{b}+4 \mathrm{c})=0
$$

implying that

$$
\begin{aligned}
3 \mathrm{a}+\mathrm{b}+\mathrm{c} & =0 \\
-\mathrm{a}+\mathrm{b}-3 \mathrm{c} & =0 \\
2 \mathrm{a}-\mathrm{b}+4 \mathrm{c} & =0
\end{aligned}
$$

Solving this linear system of three equations in three variables

$$
\left[\begin{array}{rrr|r}
3 & 1 & 1 & 0 \\
-1 & 1 & -3 & 0 \\
2 & -1 & 4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since there is nontrivial solution, T is a dependent subset of \mathcal{P}_{2}.

Problem

Is $\mathrm{U}=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\right\}$ an independent subset of \mathbf{M}_{22} ?

Problem

Is $\mathrm{U}=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\right\}$ an independent subset of \mathbf{M}_{22} ?

Solution
Suppose $\mathrm{a}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]+\mathrm{b}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+\mathrm{c}\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for some $a, b, c \in \mathbb{R}$.

Problem

Is $\mathrm{U}=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\right\}$ an independent subset of \mathbf{M}_{22} ?

Solution
Suppose $\mathrm{a}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]+\mathrm{b}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+\mathrm{c}\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for some $a, b, c \in \mathbb{R}$.

$$
\begin{aligned}
& \Downarrow \\
& \mathrm{a}+\mathrm{c}=0, \quad \mathrm{a}+\mathrm{b}=0, \\
& \mathrm{~b}+\mathrm{c}=0, \quad \mathrm{a}+\mathrm{c}=0 .
\end{aligned}
$$

Problem

Is $\mathrm{U}=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\right\}$ an independent subset of \mathbf{M}_{22} ?

Solution
Suppose $\mathrm{a}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]+\mathrm{b}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+\mathrm{c}\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for some $a, b, c \in \mathbb{R}$.

$$
\begin{gathered}
\Downarrow \\
a+c=0, \quad a+b=0, \\
b+c=0, \quad a+c=0 .
\end{gathered}
$$

This system of four equations in three variables has unique solution $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$,

Problem

Is $\mathrm{U}=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\right\}$ an independent subset of \mathbf{M}_{22} ?

Solution
Suppose $\mathrm{a}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]+\mathrm{b}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+\mathrm{c}\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for some $a, b, c \in \mathbb{R}$. \Downarrow

$$
\begin{array}{ll}
a+c=0, & a+b=0, \\
b+c=0, & a+c=0 .
\end{array}
$$

This system of four equations in three variables has unique solution $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$, \Downarrow

U is an independent subset of M_{22}.

Example (An independent subset of \mathcal{P}_{n})
Consider $\left\{1, \mathrm{x}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{n}}\right\}$, and suppose that

$$
a_{0} \cdot 1+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0
$$

for some $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$. Then $a_{0}=a_{1}=\cdots=a_{n}=0$, and thus $\left\{1, \mathrm{x}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{n}}\right\}$ is an independent subset of \mathcal{P}_{n}.

Example (An independent subset of \mathcal{P}_{n})
Consider $\left\{1, \mathrm{x}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{n}}\right\}$, and suppose that

$$
a_{0} \cdot 1+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0
$$

for some $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$. Then $a_{0}=a_{1}=\cdots=a_{n}=0$, and thus $\left\{1, \mathrm{x}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{n}}\right\}$ is an independent subset of \mathcal{P}_{n}.

Example (Polynomials with distinct degrees)
Any set of polynomials with DISTINCT degrees is independent.
For example,

$$
\left\{2 x^{4}-x^{3}+5, \quad-3 x^{3}+2 x^{2}+2, \quad 4 x^{2}+x-3, \quad 2 x-1, \quad 3\right\}
$$

is an independent subset of \mathcal{P}_{4}.

Example

As we saw earlier, $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ (the standard basis of \mathbb{R}^{n}) is an independent subset of \mathbb{R}^{n}.

Example

As we saw earlier, $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ (the standard basis of \mathbb{R}^{n}) is an independent subset of \mathbb{R}^{n}.

Example

$\mathrm{U}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right]\right\}$
is an independent subset of \mathbf{M}_{32}.

Example

As we saw earlier, $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ (the standard basis of \mathbb{R}^{n}) is an independent subset of \mathbb{R}^{n}.

Example

$\mathrm{U}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right]\right\}$
is an independent subset of \mathbf{M}_{32}.

Example (An independent subset of \mathbf{M}_{mn})
In general, the set of $\mathrm{mn} \mathrm{m} \times \mathrm{n}$ matrices that have a ' 1 ' in position (i, j) and zeros elsewhere, $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$, constitutes an independent subset of M_{mn}.

Example

Let V be a vector space.

1. If \mathbf{v} is a nonzero vector of V , then $\{\mathbf{v}\}$ is an independent subset of V .

Example

Let V be a vector space.

1. If \mathbf{v} is a nonzero vector of V , then $\{\mathbf{v}\}$ is an independent subset of V .

Proof. Suppose that $\mathrm{kv}=\mathbf{0}$ for some $\mathrm{k} \in \mathbb{R}$. Since $\mathbf{v} \neq \mathbf{0}$, it must be that $\mathrm{k}=0$, and therefore $\{\mathbf{v}\}$ is an independent set.
2. The zero vector of $\mathrm{V}, \mathbf{0}$ is never an element of an independent subset of V.

Example

Let V be a vector space.

1. If \mathbf{v} is a nonzero vector of V , then $\{\mathbf{v}\}$ is an independent subset of V .

Proof. Suppose that $\mathrm{kv}=\mathbf{0}$ for some $\mathrm{k} \in \mathbb{R}$. Since $\mathbf{v} \neq \mathbf{0}$, it must be that $\mathrm{k}=0$, and therefore $\{\mathbf{v}\}$ is an independent set.
2. The zero vector of $\mathrm{V}, \mathbf{0}$ is never an element of an independent subset of V.

Proof. Suppose $S=\left\{\mathbf{0}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{\mathrm{k}}\right\}$ is a subset of V . Then

$$
1(\mathbf{0})+0\left(\mathbf{v}_{2}\right)+0\left(\mathbf{v}_{3}\right)+\cdots+0\left(\mathbf{v}_{\mathrm{k}}\right)=\mathbf{0} .
$$

Since the coefficient of $\mathbf{0}$ (on the left-hand side) is ' 1 ', we have a nontrivial vanishing linear combination of the vectors of S . Therefore, S is dependent.

Problem

Let V be a vector space and let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ be an independent subset of V . Is

$$
S=\{\mathbf{u}+\mathbf{v}, 2 \mathbf{u}+\mathbf{w}, \mathbf{v}-5 \mathbf{w}\}
$$

an independent subset of V? Justify your answer.

Problem

Let V be a vector space and let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ be an independent subset of V . Is

$$
S=\{\mathbf{u}+\mathbf{v}, 2 \mathbf{u}+\mathbf{w}, \mathbf{v}-5 \mathbf{w}\}
$$

an independent subset of V? Justify your answer.

Solution
Suppose that a linear combination of the vectors of S is equal to zero, i.e.,

$$
\mathrm{a}(\mathbf{u}+\mathbf{v})+\mathrm{b}(2 \mathbf{u}+\mathbf{w})+\mathrm{c}(\mathbf{v}-5 \mathbf{w})=\mathbf{0}
$$

for some $a, b, c \in \mathbb{R}$. Then $(a+2 b) \mathbf{u}+(a+c) \mathbf{v}+(b-5 c) \mathbf{w}=\mathbf{0}$. Since $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent,

$$
\begin{array}{r}
a+2 b=0 \\
a+c=0 \\
b-5 c=0 .
\end{array}
$$

Solving for a, b and c , we find that the system has unique solution $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$. Therefore, S is linearly independent.

Problem

Suppose that A is an $n \times n$ matrix with the property that $A^{k}=\mathbf{0}$ but $A^{k-1} \neq 0$. Prove that

$$
\mathrm{B}=\left\{\mathrm{I}, \mathrm{~A}, \mathrm{~A}^{2}, \ldots, \mathrm{~A}^{\mathrm{k}-1}\right\}
$$

is an independent subset of \mathbf{M}_{nn}.

Problem

Suppose that A is an $n \times n$ matrix with the property that $A^{k}=\mathbf{0}$ but $A^{k-1} \neq 0$. Prove that

$$
\mathrm{B}=\left\{\mathrm{I}, \mathrm{~A}, \mathrm{~A}^{2}, \ldots, \mathrm{~A}^{\mathrm{k}-1}\right\}
$$

is an independent subset of \mathbf{M}_{nn}.

Solution
We need to show that

$$
r_{0} \mathrm{I}+\mathrm{r}_{1} \mathrm{~A}+\mathrm{r}_{2} \mathrm{~A}^{2}+\cdots+\mathrm{r}_{\mathrm{k}-1} \mathrm{~A}^{\mathrm{k}-1}=\mathbf{0} \quad \stackrel{?}{\Longrightarrow} \quad \mathrm{r}_{0}=\mathrm{r}_{1}=\cdots=\mathrm{r}_{\mathrm{k}-1}=0 .
$$

Problem

Suppose that A is an $n \times n$ matrix with the property that $A^{k}=\mathbf{0}$ but $\mathrm{A}^{\mathrm{k}-1} \neq \mathbf{0}$. Prove that

$$
\mathrm{B}=\left\{\mathrm{I}, \mathrm{~A}, \mathrm{~A}^{2}, \ldots, \mathrm{~A}^{\mathrm{k}-1}\right\}
$$

is an independent subset of \mathbf{M}_{nn}.
Solution
We need to show that

$$
r_{0} \mathrm{I}+\mathrm{r}_{1} \mathrm{~A}+\mathrm{r}_{2} \mathrm{~A}^{2}+\cdots+\mathrm{r}_{\mathrm{k}-1} \mathrm{~A}^{\mathrm{k}-1}=\mathbf{0} \quad \stackrel{?}{\Longrightarrow} \quad \mathrm{r}_{0}=\mathrm{r}_{1}=\cdots=\mathrm{r}_{\mathrm{k}-1}=0 .
$$

Multiply $\mathrm{A}^{\mathrm{k}-1}$ on both sides:

$$
\begin{gathered}
r_{0} A^{k-1}+r_{1} A^{k}+r_{2} A^{k+1}+\cdots+r_{k-1} A^{2 k-2}=\mathbf{0} \\
\Downarrow \\
r_{0} A^{k-1}=\mathbf{0}
\end{gathered}
$$

Since $A^{k-1} \neq \mathbf{0}$, we see that $r_{0}=0$.

Problem

Suppose that A is an $\mathrm{n} \times \mathrm{n}$ matrix with the property that $\mathrm{A}^{\mathrm{k}}=\mathbf{0}$ but $\mathrm{A}^{k-1} \neq \mathbf{0}$. Prove that

$$
\mathrm{B}=\left\{\mathrm{I}, \mathrm{~A}, \mathrm{~A}^{2}, \ldots, \mathrm{~A}^{\mathrm{k}-1}\right\}
$$

is an independent subset of \mathbf{M}_{nn}.

Solution

We need to show that

$$
r_{0} I+r_{1} A+r_{2} A^{2}+\cdots+r_{k-1} A^{k-1}=\mathbf{0} \quad \stackrel{?}{\Longrightarrow} \quad r_{0}=r_{1}=\cdots=r_{k-1}=0 .
$$

Multiply $\mathrm{A}^{\mathrm{k}-1}$ on both sides:

$$
\begin{gathered}
r_{0} A^{k-1}+r_{1} A^{k}+r_{2} A^{k+1}+\cdots+r_{k-1} A^{2 k-2}=0 \\
\Downarrow \\
r_{0} A^{k-1}=0
\end{gathered}
$$

Since $A^{k-1} \neq \mathbf{0}$, we see that $r_{0}=0$. Repeat the above processes to show that all $\mathrm{r}_{\mathrm{i}}=0$ for $\mathrm{i}=0,1, \cdots, \mathrm{k}-1$.

Theorem (Unique Representation Theorem)
Let V be a vector space and let $\mathrm{U}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{k}}\right\} \subseteq \mathrm{V}$ be an independent set. If \mathbf{v} is in $\operatorname{span}(\mathrm{U})$, then \mathbf{v} has a unique representation as a linear combination of elements of U .

Theorem (Unique Representation Theorem)
Let V be a vector space and let $\mathrm{U}=\left\{\mathbf{v}_{1}, \mathrm{v}_{2}, \ldots, \mathbf{v}_{\mathrm{k}}\right\} \subseteq \mathrm{V}$ be an independent set. If \mathbf{v} is in $\operatorname{span}(\mathrm{U})$, then \mathbf{v} has a unique representation as a linear combination of elements of U .

Proof.
If a vector v has two (ostensibly different) representations

$$
\begin{aligned}
& \mathbf{v}=\mathrm{s}_{1} \mathbf{v}_{1}+\mathrm{s}_{2} \mathbf{v}_{2}+\cdots+\mathrm{s}_{\mathrm{n}} \mathbf{v}_{\mathrm{n}} \\
& \mathbf{v}=\mathrm{t}_{1} \mathbf{v}_{1}+\mathrm{t}_{2} \mathbf{v}_{2}+\cdots+\mathrm{t}_{\mathrm{n}} \mathbf{v}_{\mathrm{n}}
\end{aligned}
$$

Theorem (Unique Representation Theorem)

Let V be a vector space and let $\mathrm{U}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{k}}\right\} \subseteq \mathrm{V}$ be an independent set. If \mathbf{v} is in $\operatorname{span}(\mathrm{U})$, then \mathbf{v} has a unique representation as a linear combination of elements of U .

Proof.
If a vector v has two (ostensibly different) representations

$$
\begin{gathered}
\mathbf{v}=\mathrm{s}_{1} \mathbf{v}_{1}+\mathrm{s}_{2} \mathbf{v}_{2}+\cdots+\mathrm{s}_{\mathrm{n}} \mathbf{v}_{\mathrm{n}} \\
\mathbf{v}=\mathrm{t}_{1} \mathbf{v}_{1}+\mathrm{t}_{2} \mathbf{v}_{2}+\cdots+\mathrm{t}_{\mathrm{n}} \mathbf{v}_{\mathrm{n}} \\
\Downarrow \\
\left(\mathrm{~s}_{1}-\mathrm{t}_{1}\right) \mathbf{v}_{1}+\left(\mathrm{s}_{2}-\mathrm{t}_{2}\right) \mathbf{v}_{2}+\cdots+\left(\mathrm{s}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}}\right) \mathbf{v}_{\mathrm{n}}=\mathbf{0}
\end{gathered}
$$

Theorem (Unique Representation Theorem)

Let V be a vector space and let $\mathrm{U}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{k}}\right\} \subseteq \mathrm{V}$ be an independent set. If \mathbf{v} is in $\operatorname{span}(\mathrm{U})$, then \mathbf{v} has a unique representation as a linear combination of elements of U .

Proof.
If a vector v has two (ostensibly different) representations

$$
\begin{gathered}
\mathbf{v}=\mathrm{s}_{1} \mathbf{v}_{1}+\mathrm{s}_{2} \mathbf{v}_{2}+\cdots+\mathrm{s}_{\mathrm{n}} \mathbf{v}_{\mathrm{n}} \\
\mathbf{v}=\mathrm{t}_{1} \mathbf{v}_{1}+\mathrm{t}_{2} \mathbf{v}_{2}+\cdots+\mathrm{t}_{\mathrm{n}} \mathbf{v}_{\mathrm{n}} \\
\Downarrow \\
\left(\mathrm{~s}_{1}-\mathrm{t}_{1}\right) \mathbf{v}_{1}+\left(\mathrm{s}_{2}-\mathrm{t}_{2}\right) \mathbf{v}_{2}+\cdots+\left(\mathrm{s}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}}\right) \mathbf{v}_{\mathrm{n}}=\mathbf{0} \\
\Downarrow \\
\mathrm{s}_{1}-\mathrm{t}_{1}=0, \quad \mathrm{~s}_{2}-\mathrm{t}_{2}=0, \quad \cdots, \quad \mathrm{~s}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}}=0
\end{gathered}
$$

Theorem (Unique Representation Theorem)

Let V be a vector space and let $\mathrm{U}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{k}}\right\} \subseteq \mathrm{V}$ be an independent set. If \mathbf{v} is in $\operatorname{span}(\mathrm{U})$, then \mathbf{v} has a unique representation as a linear combination of elements of U .

Proof.
If a vector v has two (ostensibly different) representations

$$
\begin{gathered}
\mathbf{v}=\mathrm{s}_{1} \mathbf{v}_{1}+\mathrm{s}_{2} \mathbf{v}_{2}+\cdots+\mathrm{s}_{\mathrm{n}} \mathbf{v}_{\mathrm{n}} \\
\mathbf{v}=\mathrm{t}_{1} \mathbf{v}_{1}+\mathrm{t}_{2} \mathbf{v}_{2}+\cdots+\mathrm{t}_{\mathrm{n}} \mathbf{v}_{\mathrm{n}} \\
\Downarrow \\
\left(\mathrm{~s}_{1}-\mathrm{t}_{1}\right) \mathbf{v}_{1}+\left(\mathrm{s}_{2}-\mathrm{t}_{2}\right) \mathbf{v}_{2}+\cdots+\left(\mathrm{s}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}}\right) \mathbf{v}_{\mathrm{n}}=\mathbf{0} \\
\Downarrow \\
\mathrm{s}_{1}-\mathrm{t}_{1}=0, \quad \mathrm{~s}_{2}-\mathrm{t}_{2}=0, \quad \cdots, \quad \mathrm{~s}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}}=0 . \\
\Downarrow
\end{gathered}
$$

The two representations are the same one.

Linear Independence

The Fundamental Theorem

Bases and Dimension

The Fundamental Theorem

The Fundamental Theorem

The Fundamental Theorem for \mathbb{R}^{n} generalizes to an arbitrary vector space.

The Fundamental Theorem

The Fundamental Theorem for \mathbb{R}^{n} generalizes to an arbitrary vector space.

Theorem (Fundamental Theorem)
Let V be a vector space that can be spanned by a set of n vectors, and suppose that V contains an independent subset of m vectors. Then $\mathrm{m} \leq \mathrm{n}$.

The Fundamental Theorem

The Fundamental Theorem for \mathbb{R}^{n} generalizes to an arbitrary vector space.

Theorem (Fundamental Theorem)
Let V be a vector space that can be spanned by a set of n vectors, and suppose that V contains an independent subset of m vectors. Then $m \leq n$.

Proof.
Let $\mathrm{X}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right\}$ and let $\mathrm{Y}=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathrm{m}}\right\}$. Suppose $\mathrm{V}=\operatorname{span}(\mathrm{X})$ and that Y is an independent subset of V . Each vector in Y can be written as a linear combination of vectors of X : for some $\mathrm{a}_{\mathrm{ij}} \in \mathbb{R}$, $1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq \mathrm{n}$,

$$
\begin{aligned}
& \mathbf{y}_{1}=a_{11} \mathbf{x}_{1}+\mathrm{a}_{12} \mathbf{x}_{2}+\cdots+\mathrm{a}_{1 \mathrm{n}} \mathbf{x}_{\mathrm{n}} \\
& \mathbf{y}_{2}= \\
& \mathrm{a}_{21} \mathbf{x}_{1}+\mathrm{a}_{22} \mathbf{x}_{2}+\cdots+\mathrm{a}_{2 \mathrm{n}} \mathbf{x}_{\mathrm{n}} \\
& \vdots= \\
& \mathbf{y}_{\mathrm{m}}=a_{\mathrm{m} 1} \mathbf{x}_{1}+\mathrm{a}_{\mathrm{m} 2} \mathbf{x}_{2}+\cdots+\mathrm{a}_{\mathrm{mn}} \mathbf{x}_{\mathrm{n}}
\end{aligned}
$$

Proof. (continued)
Let $A=\left[a_{i j}\right]$, and suppose that $m>n$. Since $\operatorname{rank}(\mathrm{A})=\operatorname{dim}(\operatorname{row}(\mathrm{A})) \leq \mathrm{n}$, it follows that the rows of A form a dependent subset of \mathbb{R}^{n}, and hence there is a nontrivial linear combination of the rows of A that is equal to the $1 \times \mathrm{n}$ vector of all zeros, i.e., there exist $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{m}} \in \mathbb{R}$, not all equal to zero, such that

$$
\left[\begin{array}{llll}
\mathrm{s}_{1} & \mathrm{~s}_{2} & \cdots & \mathrm{~s}_{\mathrm{m}}
\end{array}\right] \mathrm{A}=\left[\begin{array}{llll}
0 & 0 & \cdots & 0
\end{array}\right]=\mathbf{0}_{1 \mathrm{n}} .
$$

It follows that for each $\mathrm{j}, \mathrm{1} \leq \mathrm{j} \leq \mathrm{n}$,

$$
\begin{equation*}
\mathrm{s}_{1} \mathrm{a}_{1 \mathrm{j}}+\mathrm{s}_{2} \mathrm{a}_{2 \mathrm{j}}+\ldots+\mathrm{s}_{\mathrm{m}} \mathrm{a}_{\mathrm{mj}}=0 \tag{1}
\end{equation*}
$$

Consider the (nontrivial) linear combination of vectors of Y:

$$
\mathrm{s}_{1} \mathrm{y}_{1}+\mathrm{s}_{2} \mathrm{y}_{2}+\cdots+\mathrm{s}_{\mathrm{m}} \mathrm{y}_{\mathrm{m}} .
$$

Proof. (continued)

$$
\begin{aligned}
& \mathrm{s}_{1} \mathbf{y}_{1}+\mathrm{s}_{2} \mathbf{y}_{2}+\cdots+\mathrm{s}_{\mathrm{m}} \mathbf{y}_{\mathrm{m}}=\mathrm{s}_{1}\left(\mathrm{a}_{11} \mathbf{x}_{1}+\mathrm{a}_{12} \mathbf{x}_{2}+\cdots+\mathrm{a}_{1 \mathrm{n}} \mathbf{x}_{\mathrm{n}}\right)+ \\
& \mathrm{s}_{2}\left(\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\cdots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}\right)+ \\
& \mathrm{S}_{\mathrm{m}}\left(\mathrm{a}_{\mathrm{m} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{m} 2} \mathrm{x}_{2}+\cdots+\mathrm{a}_{\mathrm{mn}} \mathrm{x}_{\mathrm{n}}\right) \\
& =\left(\mathrm{s}_{1} \mathrm{a}_{11}+\mathrm{s}_{2} \mathrm{a}_{21}+\ldots+\mathrm{s}_{\mathrm{m}} \mathrm{a}_{\mathrm{m} 1}\right) \mathrm{x}_{1}+ \\
& \left(\mathrm{s}_{1} \mathrm{a}_{12}+\mathrm{s}_{2} \mathrm{a}_{22}+\ldots+\mathrm{s}_{\mathrm{m}} \mathrm{a}_{\mathrm{m} 2}\right) \mathrm{x}_{2}+ \\
& \left(\mathrm{s}_{1} \mathrm{a}_{1 \mathrm{n}}+\mathrm{s}_{2} \mathrm{a}_{2 \mathrm{n}}+\ldots+\mathrm{s}_{\mathrm{m}} \mathrm{a}_{\mathrm{mn}}\right) \mathrm{x}_{\mathrm{n}} .
\end{aligned}
$$

By Equation (1), it follows that

$$
\mathrm{s}_{1} \mathbf{y}_{1}+\mathrm{s}_{2} \mathbf{y}_{2}+\cdots+\mathrm{s}_{\mathrm{m}} \mathbf{y}_{\mathrm{m}}=0 \mathbf{x}_{1}+0 \mathbf{x}_{2}+\cdots+0 \mathrm{x}_{\mathrm{n}}=\mathbf{0} .
$$

Therefore, $\mathrm{s}_{1} \mathbf{y}_{1}+\mathrm{s}_{2} \mathbf{y}_{2}+\cdots+\mathrm{s}_{\mathrm{m}} \mathbf{y}_{\mathrm{m}}=\mathbf{0}$ is a nontrivial vanishing linear combination of the vectors of Y.

Proof. (continued)

$$
\begin{aligned}
& \mathrm{s}_{1} \mathbf{y}_{1}+\mathrm{s}_{2} \mathbf{y}_{2}+\cdots+\mathrm{s}_{\mathrm{m}} \mathbf{y}_{\mathrm{m}}= \mathrm{s}_{1}\left(\mathrm{a}_{11} \mathbf{x}_{1}+\mathrm{a}_{12} \mathbf{x}_{2}+\cdots+\mathrm{a}_{1 \mathrm{n}} \mathbf{x}_{\mathrm{n}}\right)+ \\
& \mathrm{s}_{2}\left(\mathrm{a}_{21} \mathbf{x}_{1}+\mathrm{a}_{22} \mathbf{x}_{2}+\cdots+\mathrm{a}_{2 \mathrm{n}} \mathbf{x}_{\mathrm{n}}\right)+ \\
& \vdots \\
& \\
& \mathrm{s}_{\mathrm{m}}\left(\mathrm{a}_{\mathrm{m} 1} \mathbf{x}_{1}+\mathrm{a}_{\mathrm{m} 2} \mathbf{x}_{2}+\cdots+\mathrm{a}_{\mathrm{mn}} \mathbf{x}_{\mathrm{n}}\right) \\
&=\left(\mathrm{s}_{1} \mathrm{a}_{11}+\mathrm{s}_{2} \mathrm{a}_{21}+\ldots+\mathrm{s}_{\mathrm{m}} \mathrm{a}_{\mathrm{m} 1}\right) \mathbf{x}_{1}+ \\
&\left(\mathrm{s}_{1} \mathrm{a}_{12}+\mathrm{s}_{2} \mathrm{a}_{22}+\ldots+\mathrm{s}_{\mathrm{m}} \mathrm{a}_{\mathrm{m} 2}\right) \mathbf{x}_{2}+ \\
& \vdots \\
&\left(\mathrm{s}_{1} \mathrm{a}_{1 \mathrm{n}}+\mathrm{s}_{2} \mathrm{a}_{2 \mathrm{n}}+\ldots+\mathrm{s}_{\mathrm{m}} \mathrm{a}_{\mathrm{mn}}\right) \mathbf{x}_{\mathrm{n}} .
\end{aligned}
$$

By Equation (1), it follows that

$$
\mathrm{s}_{1} \mathbf{y}_{1}+\mathrm{s}_{2} \mathbf{y}_{2}+\cdots+\mathrm{s}_{\mathrm{m}} \mathbf{y}_{\mathrm{m}}=0 \mathbf{x}_{1}+0 \mathbf{x}_{2}+\cdots+0 \mathbf{x}_{\mathrm{n}}=\mathbf{0} .
$$

Therefore, $\mathrm{s}_{1} \mathbf{y}_{1}+\mathrm{s}_{2} \mathbf{y}_{2}+\cdots+\mathrm{s}_{\mathrm{m}} \mathbf{y}_{\mathrm{m}}=\mathbf{0}$ is a nontrivial vanishing linear combination of the vectors of Y . This contradicts the fact that Y is independent, and therefore $\mathrm{m} \leq \mathrm{n}$.

Linear Independence

The Fundamental Theorem

Bases and Dimension

Bases and Dimension

Bases and Dimension

Definition

Let V be a vector space and let $\mathrm{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\mathrm{n}}\right\} \subseteq \mathrm{V}$. We say B is a basis of V if
(i) B is an independent subset of V and
(ii) $\operatorname{span}(B)=V$.

Bases and Dimension

Definition

Let V be a vector space and let $\mathrm{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\mathrm{n}}\right\} \subseteq \mathrm{V}$. We say B is a basis of V if
(i) B is an independent subset of V and
(ii) $\operatorname{span}(\mathrm{B})=\mathrm{V}$.

Remark (Unique Representation Theorem)

Recall that if V is a vector space and B is a basis of V , then as seen earlier, any vector $\mathbf{u} \in \mathrm{V}$ can be expressed uniquely as a linear combination of vectors of B.

Example

As we saw earlier, $\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$ is a basis of \mathbb{R}^{n}, called the standard basis of \mathbb{R}^{n}.

Example

As we saw earlier, $\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$ is a basis of \mathbb{R}^{n}, called the standard basis of \mathbb{R}^{n}.

Example (A basis of \mathcal{P}_{n})
We've already seen that

$$
\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

spans \mathcal{P}_{n} and is an independent subset of \mathcal{P}_{n}, and is thus a basis of \mathcal{P}_{n}.

Example

As we saw earlier, $\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$ is a basis of \mathbb{R}^{n}, called the standard basis of \mathbb{R}^{n}.

Example (A basis of \mathcal{P}_{n})
We've already seen that

$$
\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

spans \mathcal{P}_{n} and is an independent subset of \mathcal{P}_{n}, and is thus a basis of \mathcal{P}_{n}.

$$
\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

is called the standard basis of \mathcal{P}_{n}.

Example

As we saw earlier, $\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$ is a basis of \mathbb{R}^{n}, called the standard basis of \mathbb{R}^{n}.

Example (A basis of \mathcal{P}_{n})
We've already seen that

$$
\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

spans \mathcal{P}_{n} and is an independent subset of \mathcal{P}_{n}, and is thus a basis of \mathcal{P}_{n}.

$$
\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

is called the standard basis of \mathcal{P}_{n}.

Example (A basis of \mathbf{M}_{mn})

The set of $m n \times n$ matrices that have a ' 1 ' in position (i, j) and zeros elsewhere, $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$, spans \mathbf{M}_{mn} and is an independent subset of M_{mn}.

Example

As we saw earlier, $\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$ is a basis of \mathbb{R}^{n}, called the standard basis of \mathbb{R}^{n}.

Example (A basis of \mathcal{P}_{n})

We've already seen that

$$
\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

spans \mathcal{P}_{n} and is an independent subset of \mathcal{P}_{n}, and is thus a basis of \mathcal{P}_{n}.

$$
\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

is called the standard basis of \mathcal{P}_{n}.

Example (A basis of \mathbf{M}_{mn})

The set of $m n \times n$ matrices that have a ' 1 ' in position (i, j) and zeros elsewhere, $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$, spans \mathbf{M}_{mn} and is an independent subset of \mathbf{M}_{mn}. Therefore, this set constitutes a basis of \mathbf{M}_{mn} and is called the standard basis of \mathbf{M}_{mn}.

The Invariance Theorem generalizes from \mathbb{R}^{n} to an arbitrary vector space V. The proof is identical, and involves two applications of the Fundamental Theorem.

The Invariance Theorem generalizes from \mathbb{R}^{n} to an arbitrary vector space V. The proof is identical, and involves two applications of the Fundamental Theorem.

Theorem (Invariance Theorem)
If V is a vector space with bases $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\mathrm{m}}\right\}$ and $\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{\mathrm{n}}\right\}$, then $\mathrm{m}=\mathrm{n}$.

The Invariance Theorem generalizes from \mathbb{R}^{n} to an arbitrary vector space V. The proof is identical, and involves two applications of the Fundamental Theorem.

Theorem (Invariance Theorem)
If V is a vector space with bases $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\mathrm{m}}\right\}$ and $\left\{\mathbf{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right\}$, then $\mathrm{m}=\mathrm{n}$.

Definition (Dimension of a vector space)
Let V be a vector space and suppose $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ is a basis of V. The dimension of V is the number of vectors in B , and we write $\operatorname{dim}(\mathrm{V})=\mathrm{n}$. By convention, $\operatorname{dim}(\{\mathbf{0}\}):=0$.

Example

Let V be a vector space and \mathbf{u} a NONZERO vector of V. Then $\mathrm{U}=\operatorname{span}\{\mathbf{u}\}$ is spanned by $\{\mathbf{u}\}$. Since $\{\mathbf{u}\}$ is independent, $\{\mathbf{u}\}$ is a basis of U , and thus $\operatorname{dim}(\mathrm{U})=1$.

Example

Let V be a vector space and \mathbf{u} a NONZERO vector of V. Then $\mathrm{U}=\operatorname{span}\{\mathbf{u}\}$ is spanned by $\{\mathbf{u}\}$. Since $\{\mathbf{u}\}$ is independent, $\{\mathbf{u}\}$ is a basis of U , and thus $\operatorname{dim}(\mathrm{U})=1$.

Example

Since $\left\{1, \mathrm{x}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{n}}\right\}$ is a basis of $\mathcal{P}_{\mathrm{n}}, \operatorname{dim}\left(\mathcal{P}_{\mathrm{n}}\right)=\mathrm{n}+1$.

Example

Let V be a vector space and \mathbf{u} a NONZERO vector of V. Then $\mathrm{U}=\operatorname{span}\{\mathbf{u}\}$ is spanned by $\{\mathbf{u}\}$. Since $\{\mathbf{u}\}$ is independent, $\{\mathbf{u}\}$ is a basis of U , and thus $\operatorname{dim}(\mathrm{U})=1$.

Example

Since $\left\{1, \mathrm{x}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{n}}\right\}$ is a basis of $\mathcal{P}_{\mathrm{n}}, \operatorname{dim}\left(\mathcal{P}_{\mathrm{n}}\right)=\mathrm{n}+1$.

Example

$\operatorname{dim}\left(\mathbf{M}_{\mathrm{mn}}\right)=\mathrm{mn}$ since the standard basis of \mathbf{M}_{mn} consists of mn matrices.

Problem

Let $\mathrm{U}=\left\{\mathrm{A} \in \mathrm{M}_{22} \left\lvert\, \mathrm{A}\left[\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right]=\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right] \mathrm{A}\right.\right\}$. Then U is a subspace of M_{22}. Find a basis of U , and hence $\operatorname{dim}(\mathrm{U})$.

Problem

Let $\mathrm{U}=\left\{\mathrm{A} \in \mathrm{M}_{22} \left\lvert\, \mathrm{A}\left[\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right]=\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right] \mathrm{A}\right.\right\}$. Then U is a subspace of \mathbf{M}_{22}. Find a basis of U , and hence $\operatorname{dim}(\mathrm{U})$.

Solution
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbf{M}_{22}$. Then

$$
\mathrm{A}\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{a}+\mathrm{b} & -\mathrm{b} \\
\mathrm{c}+\mathrm{d} & -\mathrm{d}
\end{array}\right]
$$

and

$$
\left[\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right] A=\left[\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a+c & b+d \\
-c & -d
\end{array}\right] .
$$

If $\mathrm{A} \in \mathrm{U}$, then $\left[\begin{array}{ll}\mathrm{a}+\mathrm{b} & -\mathrm{b} \\ \mathrm{c}+\mathrm{d} & -\mathrm{d}\end{array}\right]=\left[\begin{array}{cc}\mathrm{a}+\mathrm{c} & \mathrm{b}+\mathrm{d} \\ -\mathrm{c} & -\mathrm{d}\end{array}\right]$.

Solution (continued)
Equating entries leads to a system of four equations in the four variables $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d .

$$
\begin{aligned}
\mathrm{a}+\mathrm{b} & =\mathrm{a}+\mathrm{c} & & \mathrm{~b}-\mathrm{c}
\end{aligned}=0 .
$$

Solution (continued)
Equating entries leads to a system of four equations in the four variables $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d.

$$
\begin{array}{rlrl}
\mathrm{a}+\mathrm{b} & =\mathrm{a}+\mathrm{c} & \mathrm{~b}-\mathrm{c} & =0 \\
-\mathrm{b} & =\mathrm{b}+\mathrm{d} & \text { or } & -2 \mathrm{~b}-\mathrm{d}
\end{array}=0 .
$$

The solution to this system is $\mathrm{a}=\mathrm{s}, \mathrm{b}=-\frac{1}{2} \mathrm{t}, \mathrm{c}=-\frac{1}{2} \mathrm{t}, \mathrm{d}=\mathrm{t}$ for any $\mathrm{s}, \mathrm{t} \in \mathbb{R}$, and thus $\mathrm{A}=\left[\begin{array}{cc}\mathrm{s} & \frac{\mathrm{t}}{2} \\ -\frac{\mathrm{t}}{2} & \mathrm{t}\end{array}\right]$, $\mathrm{s}, \mathrm{t} \in \mathbb{R}$.

Solution (continued)
Equating entries leads to a system of four equations in the four variables $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d.

$$
\begin{array}{rlrl}
a+b & =a+c & b-c & =0 \\
-b & =b+d & \text { or } & -2 b-d
\end{array}=0
$$

The solution to this system is $\mathrm{a}=\mathrm{s}, \mathrm{b}=-\frac{1}{2} \mathrm{t}, \mathrm{c}=-\frac{1}{2} \mathrm{t}, \mathrm{d}=\mathrm{t}$ for any $s, t \in \mathbb{R}$, and thus $A=\left[\begin{array}{cc}s & \frac{t}{2} \\ -\frac{t}{2} & t\end{array}\right]$, $s, t \in \mathbb{R}$. Since $A \in U$ is arbitrary,

$$
\begin{aligned}
\mathrm{U} & =\left\{\left.\left[\begin{array}{cc}
\mathrm{s} & \frac{\mathrm{t}}{2} \\
-\frac{\mathrm{t}}{2} & \mathrm{t}
\end{array}\right] \right\rvert\, \mathrm{s}, \mathrm{t} \in \mathbb{R}\right\} \\
& =\left\{\left.\mathrm{s}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\mathrm{t}\left[\begin{array}{rr}
0 & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right] \right\rvert\, \mathrm{s}, \mathrm{t} \in \mathbb{R}\right\} \\
& =\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{rr}
0 & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right]\right\} .
\end{aligned}
$$

Solution (continued)
Let

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{rr}
0 & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right]\right\} .
$$

Then $\operatorname{span}(B)=U$, and it is routine to verify that B is an independent subset of M_{22}. Therefore, B is a basis of U , and $\operatorname{dim}(\mathrm{U})=2$.

Problem

Let $\mathrm{U}=\left\{\mathrm{p}(\mathrm{x}) \in \mathcal{P}_{2} \mid \mathrm{p}(1)=0\right\}$. Then U is a subspace of \mathcal{P}_{2}. Find a basis of U , and hence $\operatorname{dim}(\mathrm{U})$.

Problem

Let $\mathrm{U}=\left\{\mathrm{p}(\mathrm{x}) \in \mathcal{P}_{2} \mid \mathrm{p}(1)=0\right\}$. Then U is a subspace of \mathcal{P}_{2}. Find a basis of U , and hence $\operatorname{dim}(\mathrm{U})$.

Solution
Final Answer $\mathrm{B}=\left\{\mathrm{x}-\mathrm{x}^{2}, 1-\mathrm{x}^{2}\right\}$ is a basis of U and $\operatorname{thus} \operatorname{dim}(\mathrm{U})=2$.

