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Linear Independence

Definition
Let V be a vector space and S = {u1, u2, . . . , uk} a subset of V. The set S is
linearly independent or simply independent if the following condition holds:

s1u1 + s2u2 + · · ·+ skuk = 0 ⇒ s1 = s2 = · · · = sk = 0

i.e., the only linear combination that vanishes is the trivial one. If S is not
linearly independent, then S is said to be dependent.
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Example

The set S =


 −1

0
1

 ,

 1
1
1

 ,

 1
3
5

 is a dependent subset of R3

because

a

 −1
0
1

+ b

 1
1
1

+ c

 1
3
5

 =

 0
0
0


has nontrivial solutions, for example a = 2, b = 3 and c = −1.



Problem
Is the set T = {3x2 − x + 2, x2 + x − 1, x2 − 3x + 4} an independent subset
of P2?

Solution
Suppose a(3x2 − x + 2) + b(x2 + x − 1) + c(x2 − 3x + 4) = 0, for some
a, b, c ∈ R. Then

x2(3a + b + c) + x(−a + b − 3c) + (2a − b + 4c) = 0,

implying that
3a + b + c = 0

−a + b − 3c = 0

2a − b + 4c = 0

Solving this linear system of three equations in three variables 3 1 1 0
−1 1 −3 0
2 −1 4 0

 →

 1 0 1 0
0 1 −2 0
0 0 0 0

 .

Since there is nontrivial solution, T is a dependent subset of P2. �
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Problem

Is U =

{[
1 1
0 1

]
,

[
0 1
1 0

]
,

[
1 0
1 1

]}
an independent subset of M22?

Solution

Suppose a
[

1 1
0 1

]
+ b

[
0 1
1 0

]
+ c

[
1 0
1 1

]
=

[
0 0
0 0

]
for some

a, b, c ∈ R.
⇓

a + c = 0 , a + b = 0 ,
b + c = 0 , a + c = 0 .

This system of four equations in three variables has unique solution
a = b = c = 0,

⇓

U is an independent subset of M22.
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Example (An independent subset of Pn)

Consider {1, x, x2, . . . , xn}, and suppose that

a0 · 1 + a1x + a2x2 + · · ·+ anxn = 0

for some a0, a1, . . . , an ∈ R. Then a0 = a1 = · · · = an = 0, and thus
{1, x, x2, . . . , xn} is an independent subset of Pn.

Example ( Polynomials with distinct degrees )
Any set of polynomials with DISTINCT degrees is independent.

For example,{
2x4 − x3 + 5, −3x3 + 2x2 + 2, 4x2 + x − 3, 2x − 1, 3

}
is an independent subset of P4.
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Example
As we saw earlier, {~e1,~e2, . . . ,~en} (the standard basis of Rn) is an
independent subset of Rn.
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Example ( An independent subset of Mmn )

In general, the set of mn m× n matrices that have a ‘1’ in position (i, j) and
zeros elsewhere, 1 ≤ i ≤ m, 1 ≤ j ≤ n, constitutes an independent subset of
Mmn.
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Example
Let V be a vector space.

1. If v is a nonzero vector of V, then {v} is an independent subset of V.

Proof. Suppose that kv = 0 for some k ∈ R. Since v 6= 0, it must be
that k = 0, and therefore {v} is an independent set. �

2. The zero vector of V, 0 is never an element of an independent subset of
V.

Proof. Suppose S = {0, v2, v3, . . . , vk} is a subset of V. Then

1(0) + 0(v2) + 0(v3) + · · ·+ 0(vk) = 0.

Since the coefficient of 0 (on the left-hand side) is ‘1’, we have a
nontrivial vanishing linear combination of the vectors of S. Therefore,
S is dependent. �
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Problem
Let V be a vector space and let {u, v,w} be an independent subset of V. Is

S = {u + v, 2u + w, v − 5w}

an independent subset of V? Justify your answer.

Solution
Suppose that a linear combination of the vectors of S is equal to zero, i.e.,

a(u + v) + b(2u + w) + c(v − 5w) = 0

for some a, b, c ∈ R. Then (a + 2b)u + (a + c)v + (b − 5c)w = 0. Since
{u, v,w} is independent,

a + 2b = 0

a + c = 0

b − 5c = 0.

Solving for a,b and c, we find that the system has unique solution
a = b = c = 0. Therefore, S is linearly independent. �
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Problem

Suppose that A is an n × n matrix with the property that Ak = 0 but
Ak−1 6= 0. Prove that

B = {I,A,A2, . . . ,Ak−1}

is an independent subset of Mnn.

Solution
We need to show that

r0I + r1A + r2A2 + · · ·+ rk−1Ak−1 = 0 ?=⇒ r0 = r1 = · · · = rk−1 = 0.

Multiply Ak−1 on both sides:

r0Ak−1 + r1Ak + r2Ak+1 + · · ·+ rk−1A2k−2 = 0

⇓

r0Ak−1 = 0.

Since Ak−1 6= 0, we see that r0 = 0. Repeat the above processes to show
that all ri = 0 for i = 0, 1, · · · , k − 1. �
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Theorem (Unique Representation Theorem)

Let V be a vector space and let U = {v1, v2, . . . , vk} ⊆ V be an independent
set. If v is in span(U), then v has a unique representation as a linear
combination of elements of U.

Proof.
If a vector v has two (ostensibly different) representations

v = s1v1 + s2v2 + · · · + snvn

v = t1v1 + t2v2 + · · · + tnvn

⇓

(s1 − t1)v1 + (s2 − t2)v2 + · · ·+ (sn − tn)vn = 0

⇓

s1 − t1 = 0, s2 − t2 = 0, · · · , sn − tn = 0.

⇓

The two representations are the same one.
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The Fundamental Theorem

Bases and Dimension



The Fundamental Theorem

The Fundamental Theorem for Rn generalizes to an arbitrary vector space.

Theorem (Fundamental Theorem)
Let V be a vector space that can be spanned by a set of n vectors, and
suppose that V contains an independent subset of m vectors. Then m ≤ n.

Proof.
Let X = {x1, x2, . . . , xn} and let Y = {y1, y2, . . . , ym}. Suppose
V = span(X) and that Y is an independent subset of V. Each vector in Y
can be written as a linear combination of vectors of X: for some aij ∈ R,
1 ≤ i ≤ m and 1 ≤ j ≤ n,

y1 = a11x1 + a12x2 + · · ·+ a1nxn

y2 = a21x1 + a22x2 + · · ·+ a2nxn

... =
...

ym = am1x1 + am2x2 + · · ·+ amnxn.
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Proof. (continued)

Let A =
[

aij
]
, and suppose that m > n. Since

rank (A) = dim(row(A)) ≤ n, it follows that the rows of A form a
dependent subset of Rn, and hence there is a nontrivial linear combination
of the rows of A that is equal to the 1× n vector of all zeros, i.e., there exist
s1, s2, . . . , sm ∈ R, not all equal to zero, such that[

s1 s2 · · · sm
]
A =

[
0 0 · · · 0

]
= 01n.

It follows that for each j, 1 ≤ j ≤ n,

s1a1j + s2a2j + . . .+ smamj = 0. (1)

Consider the (nontrivial) linear combination of vectors of Y:

s1y1 + s2y2 + · · ·+ smym.



Proof. (continued)

s1y1 + s2y2 + · · ·+ smym = s1(a11x1 + a12x2 + · · ·+ a1nxn) +

s2(a21x1 + a22x2 + · · ·+ a2nxn) +

...
sm(am1x1 + am2x2 + · · ·+ amnxn)

= (s1a11 + s2a21 + . . .+ smam1)x1 +

(s1a12 + s2a22 + . . .+ smam2)x2 +

...
(s1a1n + s2a2n + . . .+ smamn)xn.

By Equation (1), it follows that

s1y1 + s2y2 + · · ·+ smym = 0x1 + 0x2 + · · ·+ 0xn = 0.

Therefore, s1y1 + s2y2 + · · ·+ smym = 0 is a nontrivial vanishing linear
combination of the vectors of Y.

This contradicts the fact that Y is
independent, and therefore m ≤ n. �
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Bases and Dimension

Definition
Let V be a vector space and let B = {b1, b2, . . . , bn} ⊆ V. We say B is a
basis of V if
(i) B is an independent subset of V and
(ii) span(B) = V.

Remark (Unique Representation Theorem)
Recall that if V is a vector space and B is a basis of V, then as seen earlier,
any vector u ∈ V can be expressed uniquely as a linear combination of
vectors of B.
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Example
As we saw earlier, {~e1,~e2, . . . ,~en} is a basis of Rn, called the standard basis
of Rn.

Example (A basis of Pn)
We’ve already seen that

{1, x, x2, . . . , xn}

spans Pn and is an independent subset of Pn, and is thus a basis of Pn.

{1, x, x2, . . . , xn}

is called the standard basis of Pn.

Example (A basis of Mmn)

The set of mn m × n matrices that have a ‘1’ in position (i, j) and zeros
elsewhere, 1 ≤ i ≤ m, 1 ≤ j ≤ n, spans Mmn and is an independent subset of
Mmn. Therefore, this set constitutes a basis of Mmn and is called the
standard basis of Mmn.
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The Invariance Theorem generalizes from Rn to an arbitrary vector space
V. The proof is identical, and involves two applications of the Fundamental
Theorem.

Theorem (Invariance Theorem)

If V is a vector space with bases {b1, b2, . . . , bm} and {f1, f2, . . . , fn}, then
m = n.

Definition (Dimension of a vector space)

Let V be a vector space and suppose B = {b1, b2, . . . , bn} is a basis of V.
The dimension of V is the number of vectors in B, and we write
dim(V) = n. By convention, dim ({0}) := 0.
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Example
Let V be a vector space and u a NONZERO vector of V. Then
U = span{u} is spanned by {u}. Since {u} is independent, {u} is a basis of
U, and thus dim(U) = 1.

Example

Since {1, x, x2, . . . , xn} is a basis of Pn, dim(Pn) = n + 1.

Example
dim(Mmn) = mn since the standard basis of Mmn consists of mn matrices.
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Problem

Let U =

{
A ∈ M22

∣∣∣∣ A
[

1 0
1 −1

]
=

[
1 1
0 −1

]
A
}

. Then U is a

subspace of M22. Find a basis of U, and hence dim(U).

Solution

Let A =

[
a b
c d

]
∈ M22. Then

A
[

1 0
1 −1

]
=

[
a b
c d

] [
1 0
1 −1

]
=

[
a + b −b
c + d −d

]
and [

1 1
0 −1

]
A =

[
1 1
0 −1

] [
a b
c d

]
=

[
a + c b + d
−c −d

]
.

If A ∈ U, then
[

a + b −b
c + d −d

]
=

[
a + c b + d
−c −d

]
.
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Solution (continued)
Equating entries leads to a system of four equations in the four variables
a, b, c and d.

a + b = a + c
−b = b + d

c + d = −c
−d = −d

or
b − c = 0

−2b − d = 0
2c + d = 0

.

The solution to this system is a = s, b = − 1
2
t, c = − 1

2
t, d = t for any

s, t ∈ R, and thus A =

[
s t

2

− t
2

t

]
, s, t ∈ R. Since A ∈ U is arbitrary,

U =

{[
s t

2

− t
2

t

] ∣∣∣∣ s, t ∈ R
}

=

{
s
[

1 0
0 0

]
+ t

[
0 − 1

2

− 1
2

1

] ∣∣∣∣ s, t ∈ R
}

= span
{[

1 0
0 0

]
,

[
0 − 1

2

− 1
2

1

]}
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Solution (continued)
Let

B =

{[
1 0
0 0

]
,

[
0 − 1

2

− 1
2

1

]}
.

Then span(B) = U, and it is routine to verify that B is an independent
subset of M22. Therefore, B is a basis of U, and dim(U) = 2. �



Problem
Let U = {p(x) ∈ P2 | p(1) = 0}. Then U is a subspace of P2. Find a basis
of U, and hence dim(U).

Solution
Final Answer B = {x − x2, 1− x2} is a basis of U and thus dim(U) = 2. �
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